Mark schemes

Q1.
D

$$
\cdot \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot
$$

Q2.
A
It can be removed from car exhaust gases by a catalytic converter.

Q3.
C
C-C bonds are broken

Q4.
D
$\mathrm{CH}_{3} \mathrm{Cl}$ and HCl

Q5.
(a) $\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
Ignore state symbols
1
(b) $2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ or $25 \mathrm{NO}+\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CO}_{2}$

Allow multiples
Ignore state symbols
Allow $2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ (or multiples)
(c)

M1 moles $\mathrm{SO}_{2}=\frac{6490000 \times 10^{6}}{64.1}\left(=\frac{6.49 \times 10^{12}}{64.1}=1.012 \times 10^{11}\right)$

M2 mass CaO $=\left(\frac{1.012 \times 10^{11} \times 56.1}{1000}\right)=5.68 \times 10^{9}(\mathrm{~kg})$

M2 must be in standard form

Correct answer in standard form scores
2 marks (allow 5.6-5.7×109). Answer
to at least 2sf.
Correct answer in non-standard form scores 1 mark
Answers that are $5.6-5.7 \times 10^{n}$ score 1 mark
For other answers, allow ECF from M1 to M2 (but answer must be in standard form for M2 to score)

Alternative

M1 mass $\mathrm{CaO}=\frac{6490000 \times 10^{6}}{64.1} \times 56.1$
$=5.68$ million tonnes
M2 $5.68 \times 10^{9}(\mathrm{~kg})$
(7.4.. $\times 10^{9}$ would score 1 mark due to use of $\frac{64.1}{56.1}$)

Q6.
D

$$
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot \mathrm{CH}_{2} \mathrm{Cl} \cdot+\mathrm{HCl}
$$

Q7.
B

Q8.
D

Q9.
(a) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
allow fractions / multiples
allow any correct structural representation of molecules
ignore state symbols
(b) M1 working that leads to $\mathrm{n}=13$

$$
\begin{array}{ll}
\text { e.g. } & -6650=-(496 n+202) \\
\text { and/or } & 496 n=6650-202 \\
\text { and/or } & 496 n=6448 \\
& (\boldsymbol{n}=13)
\end{array}
$$

M2 $\quad \mathrm{C}_{13} \mathrm{H}_{28}$
$\mathrm{C}_{13} \mathrm{H}_{28}$ scores M1 and M2 if some correct working shown
$\mathrm{C}_{13} \mathrm{H}_{28}$ with no working scores M2 only allow error carried forward for M2 for a correct formula of an alkane from the value of \boldsymbol{n} worked out for M1 (but there must be some working shown leading to this incorrect value of \boldsymbol{n}); for example, allow $\mathrm{C}_{14} \mathrm{H}_{30}$ if error in M1 stemming from error in rearranging equation
(c) Idea that

- alkane is not gaseous or
- equation relates to gaseous alkanes or
- it takes energy to convert it into a gas or
- that water / alkane / substances are gaseous in calculations using bond enthalpies
ignore references to heat loss, incomplete combustion, loss of evaporation, not being in standard conditions or that it is not standard state
(d) M1 plotting the four values correctly (allow one error where point is ± 1 square out)

If plotted points for wrong number of C atoms for two or more compounds, cannot score M1 or M2, but could score M3 if read value off for 3C atoms

M2 smooth best fit curve
M2 best fit curve for their four points for the correct number of C atoms

M3 value from their best fit line for 3 C atoms (allow ± 1 square)
M3 need - sign (but ignore units); cannot score M3 unless there is a line on the graph
(e) M1 mass of isooctane $=692$ (g)
correct answer scores M1 and M2
M2 3.31×10^{4} or 33100 (kJ) (3sf only)
M2 correct value to incorrect number of sig figs is 1 mark;
ignore sign ;
no error carried forward for M2

Q10.
D

Q11.
C

Q12.
D

Q13.
C

Q14.
C

Q15.
D

Q16.
C
[1]

