Mark schemes	
Q1. D $\bullet CH_3 + Cl_2 \rightarrow CH_3Cl + Cl \bullet$	[1]
Q2. A It can be removed from car exhaust gases by a catalytic converter.	[1]
Q3. C C-C bonds are broken	[1]
Q4. D CH₃Cl and HCl	[1]
Q5. (a) $C_8H_{18} + 12.5 O_2 \rightarrow 8 CO_2 + 9 H_2O$ Allow multiples Ignore state symbols	1
(b) $2 \text{ NO} + 2 \text{ CO} \rightarrow \text{N}_2 + 2 \text{ CO}_2 \text{ or}$ $25 \text{ NO} + \text{C}_8\text{H}_{18} \rightarrow 12.5 \text{ N}_2 + 9 \text{ H}_2\text{O} + 8 \text{ CO}_2$ Allow multiples Ignore state symbols Allow $2\text{NO} \rightarrow \text{N}_2 + \text{O}_2$ (or multiples)	1
(c) M1 moles SO ₂ = $\frac{6490\ 000\ x\ 10^6}{64.1}$ (= $\frac{6.49\ x\ 10^{12}}{64.1}$ = 1.012 x 10 ¹¹)	1
M2 mass CaO = $\left(\frac{1.012 \times 10^{11} \times 56.1}{1000}\right)$ = 5.68 x 10 ⁹ (kg) M2 must be in standard form	1

	Correct answer in standard form scores 2 marks (allow 5.6 – 5.7 \times 10 9). Answer to at least 2sf.	
	Correct answer in non-standard form scores 1 mark	
	Answers that are 5.6 – 5.7 \times 10 ^{n} score 1 mark	
	For other answers, allow ECF from M1 to M2 (but answer must be in standard form for M2 to score)	
	Alternative	
	M1 mass CaO = $\frac{6490\ 000\ x\ 10^6}{64.1}\ x\ 56.1$	
	= 5.68 million tonnes M2 5.68 × 10 ⁹ (kg)	
	$(7.4 \times 10^9$ would score 1 mark due to use of $\frac{64.1}{56.1}$	[4]
Q6.		
D	CH₃CI + CI• CH₂CI• + HCI	
		[1]
Q7.		
В		[1]
00		
Q8. D		
		[1]
Q9.		
(a)	$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ allow fractions / multiples	
	allow any correct structural representation of molecules	
	ignore state symbols	1
(h)	M1 working that leads to $n = 13$	Ĩ
(b)	M1 working that leads to $n = 13$ e.g. $-6650 = -(496n + 202)$	
	and/or 496 n = 6650 - 202	
	and/or 496 n = 6448 (n = 13)	
	(n - 10)	

	M2	C ₁₃ H ₂₈	
		C ₁₃ H ₂₈ scores M1 and M2 if some correct working shown	
		$C_{13}H_{28}$ with no working scores M2 only	
		allow error carried forward for M2 for a correct	
		formula of an alkane from the value of n worked out for M1 (but there must be some working shown leading to this incorrect value of n); for example, allow $C_{14}H_{30}$ if error in M1 stemming from error in rearranging equation	1
			1
(c)	Idea		
	•	alkane is not gaseous or	
	•	equation relates to gaseous alkanes or it takes energy to convert it into a gas or	
	• bond	that water / alkane / substances are gaseous in calculations using enthalpies	
		ignore references to heat loss, incomplete	
		combustion, loss of evaporation, not being in	
		standard conditions or that it is not standard state	1
			-
(d)	M1 ±1 sc	plotting the four values correctly (allow one error where point is puare out)	
		If plotted points for wrong number of C atoms for two or more compounds, cannot score M1 or M2 , but could score M3 if read value off for 3C atoms	
	M2	amaath baat fit our o	1
		smooth best fit <u>curve</u> M2 best fit curve for their <u>four</u> points for the	
		correct number of C atoms	
			1
	M3	value from their best fit line for 3 C atoms (allow \pm 1 square)	
		M3 need – sign (but ignore units);	
		cannot score M3 unless there is a line on the graph	
		graph	1
(e)	M1	mass of isooctane = 692 (g)	
		correct answer scores M1 and M2	
	M2	2.21×10^4 or 22100 (k l) (2cf only)	1
	IVI∠	3.31 × 10 ^₄ or 33100 (kJ) (<u>3sf only</u>) <i>M2</i> correct value to incorrect number of sig figs is 1 mark;	
		1110IN,	

[9]

Q10. D	[1]
Q11. C	[1]
Q12. D	[1]
Q13. C	[1]
Q14. C	[1]
Q15. D	[1]
Q16. C	[1]